Excitation-Contraction Coupling

- Excitation-contraction:
 - Excitation: events that transmit AP along sarcolemma
 - Contraction: sliding of myofilaments
- AP is propagated along sarcolemma and down into T-tubules where voltage-sensitive proteins in tubules stimulate Ca\(^{2+}\) release from SR.
- Ca\(^{2+}\) released leads to contraction.
- AP is briefly and ends before contraction is seen.
- At low intracellular Ca\(^{2+}\) concentration:
 - Tropomyosin: blocks active site on actin
 - Myosin: head can’t attach to actin
 - Muscle fiber: relaxed
- Voltage-sensitive proteins in T tubules change shape, causing SR to release Ca\(^{2+}\) to the cytosol.
- At higher intracellular Ca\(^{2+}\) concentration Ca\(^{2+}\) binds to troponin.
 - Troponin: changes shape and makes tropomyosin away from binding site
 - Myosin: allowed to bind to actin forming a cross bridge
 - Cycling is initiated, causing sarcomere shortening and muscle contraction.
When nervous stimulation ceases, Ca$^{2+}$ pumped back into SR and contraction ends.

Cross Bridge Cycling

- **4 Steps:**
 1. Cross bridge formation
 2. Power stroke
 3. Cross bridge detachment
 4. Cocking of myosin head

- **Cross Bridge Formation:**
 high energy myosin \rightarrow actin active site

- **Working (power) stroke:**
 myosin head pivots & pulls thin fila toward M line

- **Cross bridge detachment:**
 ATP attaches to myosin head
 Cross bridge detach

- **Cocking of myosin head:**
 hydrolysis of ATP "cocks" head to high energy (myosin)
 Will now be used for power stroke

- This process is repeated as long as:
 - Cat$^{2+}$ ions present
 - ATP present

- When a neural impulse stops:
 - The calcium ions are no longer released from the SR
 - ATP is used actively to: transport Cat$^{2+}$ back to SR binding sites exposed
 - Without calcium ions the crossbridge cannot reattach because: binding sites exposed
 - The thin actin myofilaments will slide back into the relaxed position
 - The membrane potential is re-established by ion pumps along the T-tubules and the sarcolemma.

REVIEW:

- 1. Neural impulse - SMN
- 2. Motor neuron axon
- 3. Chemical released - Ach messenger
4. Sarcolemma depolarized (AP generated)
5. AP \rightarrow T-tubules
6. SR releases Ca$^{2+}$
7. Sarcoplasm
8. Sarcomele
9. Actin myofilament (exposes myosin binding sites)

Clinical - Homeostatic Imbalance
- Rigor mortis
 - When: 3-4 post mortem
 - 12 hr \rightarrow peak
 - Why: Ca$^{2+}$ can't be pumped back into SR

- Results: (2)
 - Cross bridge formation
 - Myosin & actin stay bound
- ATP's roles:
 - Detachment of bridge

Whole Muscle Contraction
- Same principles apply to contraction of both single fibers and whole muscles
- Contraction produces muscle tension, the force exerted on load or object to be moved
- Contraction may or may not shorten muscle
 - Isometric: no shortening, ten T doesn't exceed load
 - Isotonic: muscle shortens, tension \geq load
- Force and duration of contraction varies in response to: stimuli & intensities
- Each muscle is served by:
 - Motor Nerves
 - Contains axons of up to hundreds of motor neurons
 - Axon branch into terminals, each of which forms NMS with a single muscle fiber
 - Motor Unit: motor neuron & all muscle fibers it supplies
 - Smaller the fiber number the greater the fine control hands! eyes!
Muscle fibers from a motor unit are spread throughout the whole number, so stimulation of a single motor unit causes only weak contraction of entire muscle.

Muscle Twitch

- **Muscle Twitch:** simplest contraction resulting from a muscle fiber's response to a single AP from a motor neuron.
- **3 Phases:**

 - **Latent Phase:**
 - Events of excitation-contraction coupling
 - Muscle tension: none

 - **Period of Contraction:**
 - Tension increases
 - What is formed: cross bridge

 - **Period of Relaxation:**
 - Ca+2 reentry into SR
 - Tension declines to zero

- Muscle **contracts** faster than it **relaxes**

All or None Principle

- Once stimulated muscle **fibers** contract completely
- There are no: partial contractions
- We are talking about: muscle cell/motor unit X whole muscle
- Whole muscle does have graded or varying degrees of contraction, the amount of force (tension) produced varies according to the number of motor units called into ACTION!

Graded Muscle Response

- Normal muscle contractions are: smooth, strength varies
- Responses are graded by:
 - A **frequency** of stimulation
 - A **strength** of stimulation

- Muscle response to changes due to: **stimulus** frequency
- Single stimulus results in single contractile response, **muscle twitch**

- Temporal summation:
 2 stimuli received in rapid succession
 - Muscle fibers do not have time to completely relax between stimuli, so twitches increase in **force** with each stimulus
 - Additional Ca+2 that is released with second stimulus stimulates more shortening
 - Producing smooth, continuous contractions that add up, **summation**
 - Further increase in stimulus frequency causes muscle progress to sustained **quivering** contraction referred to as **unfused tetanus (incomplete)**

[Diagram showing tension over time with different stimulus types: twitch, wave summation, unfused and fused tetanus]

- Stimuli frequency increases, muscle tension reaches **maximum** referred to as **fused (complete) tetanus**
 - Why is it called “fuse”: one smooth sustained contracrt plateau
 - Muscle fatigue results from: **prolonged contraction strength**

- Muscle response to changes in stimulus
 - Recruitment: multiple motor unit summation, sent to many fibers ⇒ precise

- Types of Stimulus:
 - **Subthreshold stimulus**
 - Contraction: **NONE**
 - Strength: **NOT STRONG**
 - **Threshold stimuli**
 - Strength: **STRONG ENOUGH**
 - Contraction: **YES, FIRST**
- **Max stimulus**
 - Strength: **strongest**
 - Contraction: **max force**
 - Recruitment works on **size principle**
 - Which fibers are recruited first: **smallest**
 - When are larger fibers recruited: **intensity ↑, most powerful**
 - Some fibers contraction while others rest because: **prevent fatigue**

Muscle Tone
- Describe: **constant, slightly contracted of all muscles**
- Due to: **spinal reflexes**
 - Groups of motor units are alternately activated in response to input from **stretch receptors** in muscles
- Keeps muscles firm, healthy and ready to respond