Osseous Tissue & Skeletal System

- Functions:
 - support
 - protection
 - movement
 - mineral & growth factor storage
 - blood cell formation
 - Hematopoiesis:
 - Fat (triglyceride) storage
 - hormone production
 - Osteocalcin: helps regulate insulin secretion, glucose levels, metabolism

- Classification of Bones
 - There are 206 bones
 - The Axial skeleton consists of:
 - long axis: skull, vertebral column, rib cage
 - The Appendicular skeleton consists of:
 - upper and lower limbs
 - girdles

- Four shape of bones
 - LONG: longer than they are wide
 - short: bones
 - cube-shaped bones
 - Wrist and ankle bones: sesamoid
 - EX: patella
 - Vary in size and number
 - Form within tendons
 - sesamoid
- Vary in size and numbers in different individuals
 - Within tendons
 - EX. Patella
 - Flat
 - Thin, flat and curved
 - Sternum, scapulae, ribs and skull bones
 - Irregular
 - Complicated shapes
 - Vertebral & hip bones
- Bone Structure
 - Bones are organs because they contain different types of tissues
 - Also called osseous tissue
 - Comprised of
 - Bone
 - Nervous tissue
 - Cartilage
 - Fibrous connective tissue
 - Muscle cells
 - Epithelial cells
 - Blood vessels
 - Levels of structure
 - LARGEST
 - Gross
 - Microscopic
 - Chemical
 - SMALLEST
 - Gross Anatomy
 - Compact bone
 - Dense outer layer
 - Function: protection
 - Appears smooth & solid
 - Spongy bone
 - Honeycomb of small, needle-like flat pieces called: trabeculae
the open spaces between the **trabecular** bone marrow are filled with red or yellow bone marrow.

- Structure of Short, irregular and flat bones
 - Have thin plates of spongy bone called **diploë** which are covered by compact bone.

- Compact bone sandwiched between connective tissue membranes
 - Periosteum: outside of compact bone
 - Endosteum: inside of compact bone
 - No definitive marrow cavity, marrow is scattered through **spongy** bone.
 - **Hyaline** cartilage covers area of bone that is in a moveable joint.

- Structure of long bones
 - Long bones have a:
 - Shaft aka **diaphysis**
 - Bone ends, **epiphyses**
 - And **membranes**
 - Diaphysis: forms long axis of bones
 - Consists of **compact bone** surrounding the central medullary cavity filled with **yellow** marrow in adults.
 - Epiphyses: ends of long bones
 - Consist of **compact** bone externally
 - And **spongy** bone internally
 - **Articular** cartilage that covers joint surfaces
 - Epiphyseal line
 - Between the **diaphysis & epiphysis**
 - Remnant of childhood **epiphyseal plate** where bone growth occurs.

- Membranes
 - Two types
 - **Periosteum**
 - **Fibrous** layer
 - **Osteogenic** layer
 - **Endosteum**
 - Periosteum
Periosteum
- White
- double layered
- Covers external surfaces
- EXCEPT joints
- Fibrous layer
 - outer layer
 - Consists of dense irregular connective tissue
 - Sharpey's fibers that secure to bone matrix
- Osteogenic layer
 - inner layer touching bone
 - Contains primitive osteogenic stem cells that give rise to bone cells
 - Contains nerve fibers and blood vessels onto the shaft of the bone
 - Anchoring points for tendons & ligaments
- Endosteum
 - Delicate connective tissue membrane covering internal bone surface
 - Covers the trabeculae of spongy bone
 - Lines canals that pass through compact bone
 - Like periosteum contains osteogenic cells that differentiate into other bone cells
 - Hematopoietic tissue in bones
 - Red marrow found within trabecular cavities in spongy bone and diploe of flat bones
 - Newborns, medullary cavity and all spongy bone contain red marrow
 - Adults, red marrow is located in heads of femurs and humerus but most active areas of hematopoiesis are flat bones diploe and some irregular bones EX. hip bones
 - Yellow marrow can covert to red if a person comes anemic
- Bone Markings
 - Sites of muscle, ligament and tendons attachment on external surfaces
 - Areas involved in joint formation or conduits for blood vessels and nerves
3 types of markings:

- **Projection**
 - Bulge of bone
 - Increase due to stress from muscle pull or modification from joints
- **Depression**
 - Bowl, groove cut out
 - Passageways for vessels and nerves
 - Role in joints
- **Openings**
 - Hole or canal in bone
 - Serves as passageways for blood vessels and nerves

Microscopic anatomy

- Cells of bone tissue
 - 5 major cell types, all specialized
 - **Osteogenic** cells
 - **Osteoblasts**
 - **Osteocytes**
 - **Bone-lining cells**
 - **Osteoclasts**

- Osteogenic cells
 - Aka **osteoprogenitor** cells
 - Mitotically active stem cells in **prenosteum** & **endosteum**
 - Activate when stimulated
 - Differentiate into **osteoblasts** or **bone-lining cells**
 - Some still remain as osteogenic stem cells

- Osteoblast
 - Immature
 - Bone forming cells
 - Secreted unmineralized bone cells called **osteoid**
 - Osteoid made of **collagen** and calcium binding protein
 - **Collagen** makes up 90% of bone protein
 - **Osteoblasts** are actively mitotic
- Osteocyte
 - mature bone cells that no longer divide
 - Maintain bone matrix and act as stress sensors
 - Respond to mechanical stimuli such as increased force or bone of weightlessness
 - Communicate information to osteoblasts and osteoclasts, so remodeling can occur

- Bone-lining cells
 - Flat cells on the surface
 - Maintain matrix with osteocytes
 - External surface - periosteal cells
 - Internal surface - endosteal cells

- Osteoclast
 - Destructive
 - Derived from hematopoietic stem cells that become macrophages
 - Giant
 - Multinucleated
 - Function in resorption (breakdown of bone)
 - Serve to increase surface area for enzyme degradation of bones

- Compact bone
 - Also called, lamellar bone
 - Consist of:
 - Osteon
 - Also called Haversian system
 - Canals & canaliculi
 - Interstitial & circumferential lamella

- Osteon
 - Structural unit of compact bone
 - Elongated cylinder of parallel running fibers - tiny weight bearing pillars
 - Lamellae:
 - Collagen fibers that run different directions
 - Withstand stress and resist twisting
 - Bone salts are found between
Canals & canaliculi
- Central canal (Haversian canal): run thru core of osteon, contains nerves & blood vessels
- Perforating canals (Volkmann’s canal): canals lined w/ endostium @ right angles - connect blood vessels & nerves to med cav & central canal
- Lacunae: cavities where osteocytes are found
- Canaliculi: hair-like canals connect lacunae to one another and to central canal

Interstitial & circumferential lamella
- Interstitial lamellae:
- Circumferential lamellae

Periosteum
Circumfren
Endostium

Chemical Composition
- Bone is made of: organic & inorganic components
- Organic
 - Includes:
 - Osteogenic cells, osteoblasts, osteocytes, bone-lining cells, osteoclasts and osteoid
 - Osteoid: 1/3 organic bone matrix, secreted by osteoblasts
 - Has: ground substance, collagen fibers, tensile strength
- Inorganic
 - Hydroxyapatites (mineral salt): flexibility of bone
 - Made up ___% of bone by mass
 - Tiny calcium phosphate crystals in and around collagen fibers
 - Responsible for hardness and resistance to compression
- Bone is 1/3 as strong as steel in resisting compression
- Bone is as strong as steel in resisting tension
- Lasts long after death
- Can reveal information about people

Skeletal Cartilages
- Human skeleton begins made up of cartilage, which is replaced by bone, other than in flexible places
- Skeletal cartilage: highly resilient, molded cartilage mostly water, NO blood vessels or nerves!
resist outward expansion of blood vessels for nutrient delivery
dense connective tissue, surrounds like girdle

- Perichondrium:
- Cartilage is made of chondrocytes incased in small cavities within a jelly-like ECM

- Cartilage grows in two ways:
 - appositional
 - interstitial

- Appositional growth:
 - Cells in perichondrium secrete matrix against external face of cartilage
 - New matrix laid down on surface of cartilage

- Interstitial growth:
 - Chondrocytes within lacunae divide and secrete new matrix, expanding cartilage from within
 - New matrix within cartilage

Bone Development:
- Ossification: bone tissue formation, aka osteogenesis, month 2 until early adulthood
 - Begins?
 - Postnatal?
 - Always, sometimes or forever?

Formation of the bony skeleton:
- Up to about 8 weeks, fibrous membranes and hyaline cartilage of fetal skeleton and then replaced with bone
- Two methods:
 - endochondral ossification
 - intramembranous ossification

- Endochondral ossification:
 - All bones below skull, except clavicles
 - Begins late in second month of development
 - Uses previous material, hyaline cartilage, breaking down of hyaline cartilage will allow ossification to begin
 - Begins at primary ossification center in the center of the shaft
 - Steps:
 - Bone collar
 - Central cartilage in diaphysis calcifies, develops cavities
- Periosteal bud
 - Invades cavities, leads to spongy bone formation
 - Bud is made of blood vessels, nerves, red marrow
 - Osteogenic and osteoclasts

- Diaphysis elongates
 - Birth!
 - Secondary ossific center appears in epiphysis

- Epiphyses ossify
 - Hyaline cartilage remains only in growth plates and articular cartilage

- Intramembranous ossification
 - Begins with fibrous connective tissue membranes formed by mesenchymal cells
 - Forms frontal, parietal, occipital, temporal, and clavicles
 - Steps:
 - Ossification centers
 - Mesenchymal cells cluster and become osteoblasts
 - Osteoid
 - Secreted and then calcified
 - Woven bone formed and laid around blood vessels
 - Lamellar bone
 - Outer layer of woven bone forms trabeculae
 - Replaces woven bone

Growth in length of long bones
- Long bones grow lengthwise by interstitial growth, also known as longitudinal growth. This growth occurs at the epiphyseal plate.
- Interstitial growth requires ep cartilage
- 5 zones of epiphyseal plate
 - Resting zone
 - Proliferation zone
 - Hypertrophic zone
 - Calcification zone
 - Ossification zone

<table>
<thead>
<tr>
<th>Resting Zone</th>
<th>Proliferation Zone</th>
<th>Hypertrophic Zone</th>
<th>Calcification Zone</th>
<th>Ossification Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>inactive part of epiphysis of ep</td>
<td>replication rapidly dividing new cells go to diaphysis = lengthening</td>
<td>oldest chondrocytes closer to diaphysis lawns enlarge & erode intercannalicular spaces surrounding cartilage matrix calcified</td>
<td>ultimately replaced w/ spongy bone long spirals of calcified cartilage</td>
<td></td>
</tr>
</tbody>
</table>
End of adolescence, chondroblasts divide less
EP things and then is replaced by **bone**
Plate closure: epip & diaphysis fuse
 - Females: 18
 - Males: 21

Growth of width of bones
- Bones lengthen in width via **appositional** growth
- Bones thicken in response to **muscle activity**, **stress** or **added weight**
- Osteoblasts: beneath periosteum, external bone secreted matrix
- Osteoclasts: remove bone on endo surface
- Break down less than build up = thicker, stronger, not too heavy

Hormone regulation of bone growth
- Growth hormone: **most important**, stimulate ep in infancy& childhood
- Thyroid hormone: modulates GH, ensure proportions
- Testosterone: males > e puberty
- Estrogen: **females** growth spurts
- Excess or deficits will result in abnormal skeletal growth

Review: 0